Peptoid group

Group Leader: Dr Sophie Faure

Research

Staff

PERMANENT MEMBERS

M. Olivier ROY

Sophie ROY

M. Claude TAILLEFUMIER

NON PERMANENT MEMBERS

- Radhe Shyam (PhD)
- Maha Rzeigui (PhD)
FORMER MEMBERS

- Geoffrey Dumonteil (2016)
- Gaetano Angelici (2016)
- Hafida Aliouat (2016)
- Sarra Zekri (2015) M2
- Valentin Teyssier (2014) M2
- Thomas Szekely (2010-2014) Doctorat
- Yannick Esvan (2013) M2
- Carlos Fernandes (2012) Post-doctorant
- Cécile Caumes (2009-2011) Doctorat
- Thomas Hjelmgaard (2007-2010) Post-Doctorant
- Roland Remuson CR CNRS
Funded projects

ANR ARCHIPEP

Project coordinator: Claude Taillefumier

Novel peptoid architectures: from structure to biological function
Partners: ICCF UMR 6296 Institut de Chimie de Clermont-Ferrand
LPCNO - UMR 5215, IRSAMC Laboratoire de Physique et Chimie des Nano-Objets, INSA TOULOUSE

COMMUNICATIONS:

Angelici G., Roy O., Faure S., Jolibois F., Perrin L., Poteau R., Taillefumier C., All cis and tBu peptoid foldamers. 9th Peptoid Summit, Berkeley (USA), 67 août 2015.

POSTERS

H2020-MSCA-IF-2014 : PRO-MEMBRANE

Fellow: Gaetano Angelici
Project coordinator: Claude Taillefumier

“Pro-Membrane” is an extensive project which has been structured to face multiple tasks of different levels of innovation and risk. In its longest-term and most ambitious goal, Pro-Membrane, aims to face the still not solved challenge of stabilize and crystallize Membrane-Proteins (MPs). This study will use, as innovative tool, well-ordered and disordered functionalizable amphiphilic peptoids for structural determinations. Peptoids could indeed succeed where other classes of molecules previously failed, answering to the pressing need of a new method able to establish the specific interactions to stabilize and crystallize each MP. Their peculiar nature helps them to easily cross the membrane and their modular synthesis give access to an infinite combination of molecules. Despite their interest, a systematic and comparative study of their physical properties and self-assembly capacity was never done before. The multidisciplinarity of this work, between Organic Chemistry, Biophysics, and Structural Biology will be achieved through a strict collaboration between all the participants.

Collaborations