

CYCLE DE CONFÉRENCES DE CHIMIE

Avec le concours de : Université Clermont Auvergne INP Clermont Auvergne

Mardi 4 juillet à 14 h

Amphi Rémi (site des Cézeaux)

Guy SCHLATTER

ICPEES, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515, Université de Strasbourg

Controlled structuration of electrospun nanofibrous materials at different length scales: from the elaboration to the applications

Electrospinning is well-known to produce non-woven mats thanks to the random deposition of a polymer nanofiber under the action of a high electric field. However, it is shown that the fabrication of microstructured mats is also possible when the nanofiber is deposited on a patterned collector made of regularly distributed protuberances. The fabrication of such nanofibrous structured mats results from the building of an electrostatic template leading to the formation of a local field of attractive and repulsive forces driving the deposition of the nanofiber during its landing.

Our team developed this so-called "electrostatic template assisted deposition" (ETAD) and investigated the involved physical mechanisms through experiments and modeling in order to achieve the best fine-tuning of the nanofibrous micro-structures [1-4]. Moreover, ETAD was used for the fabrication of nanofibrous micro-structured composites by the alternate deposition of electrospun nanofibers and electrosprayed microparticles onto a patterned substrate. Numerical simulations of this process were conducted[4] and gave more insight into the mechanism of deposition.

Finally, depending on the nature of the nanofibers and the microparticles, such advanced 2D and 3D micro-structured nanofibrous materials can find applications in different fields such as biochips[1], biomimetic scaffolds[5,6] as well as multi-layered wound dressing embedding iron-based layered double hydroxide for drug storage and controlled release[7]. Finally, it will be shown that hierarchical structured carbon-based composites with controlled shape and characteristic sizes ranging from nm to mm length scales can also be elaborated by 3D electrospinning/electrospraying followed by pyrolysis and chemical vapor deposition. Such carbon hierarchical fibrous composites were applied as a metal-free catalyst for the steam-and oxygen-free catalytic dehydrogenation of ethylbenzene to styrene[8].

[1] S. Nedjari et al., RSC Advances, vol. 5, pp. 83600-83607, 2015.

[2] M. Liang et al., Polymer, vol. 200, 122576, 2020.

- [3] M. Liang et al., Advanced Materials Interfaces, vol. 8, n°202101302, 2021.
- [4] C.R. Wittmer et al., Polymer, vol. 55, pp. 5781-5787, 2014.
- [5] A. Garcia Garcia et al. ACS Biomater. Sci. Eng., vol. 4, pp. 3317–3326, 2018.
- [6] L. Terranova et al., ACS Biomater. Sci. Eng., vol. 7, pp. 5775–5787, 2021.
- [7] M. Pires Figueiredo et al., *European Polymer Journal*, vol. 131, 109675, 2020.
- [8] Y. Liu et al., Journal of Materials Chemistry A, vol. 5, pp. 2151-2162, 2017.