

CYCLE DE CONFÉRENCES DE CHIMIE

Avec le concours de : Université Clermont Auvergne SIGMA Clermont Ecole Doctorale des Sciences Fondamentales de l'UCA Société Chimique de France, Section Auvergne

Jeudi 4 avril à 16 h

Amphi Rémi (site des Cézeaux)

Florian KRAUS

Philipps-Universität Marburg, Germany

Some Chemistry with Uranium and Thorium

A novel access to highly-pure uranium and thorium halides UX_3 , UX_4 , and ThX_4 is presented. A chemical vapor transport starts directly from MO₂ (M = Th, U), which is easily obtained. The respective AlX₃ is used as in situ reactant and transport agent. The tetrahalides MX₄ (X = Cl, Br, I) are obtained in crystalline form. UF₄, free of oxidic impurities, is obtained by reduction of UF₆ with sulfur in anhydrous hydrogen fluoride (aHF). The uranium trihalides are obtained by reaction of the respective UX₄ with Si powder and in situ purified by chemical vapor transport. The reactions of these halides with various solvents, such as aNH₃, aHF, and aHCN are reported, e.g. UF₅ reacts with aHCN under the formation of [UF₅(HCN)₂] (Figure 1).

Figure 1: A single crystal of [UF₅(HCN)₂] inside a Schlenk tube

Some chemistry with UF₆, UF₅, UCl₆, UCl₅, and UBr₅ is shown. For UCl₆ a novel low-temperature modification is reported and structurally discussed. It is shown that the UCl₆ structure type, i.e. the crystal structure of UCl₆ at room temperature, has been reported wrong. A new synthesis for UBr₅ is reported, as well as a new modification, γ -UBr₅. In case of UBr₅ and UCl₅, aNH₃ reacts under the formation of an ammine complex of the UN₂ molecule (Figure 2). The UN₂ molecule is isoelectronic to the well-known UO₂²⁺ cation, and features UN triple bonds.

Figure 2: The obtained UN_2 complexes and their Lewis structures. Bond lengths in Å